ENZYMIC SYNTHESIS OF OLIGOSACCHARIDES TERMINATING IN THE TUMOR-ASSOCIATED SIALYL-LEWIS-a DETERMINANT

MONICA M. PALCIC*,

Department of Food Science, University of Alberta, Edmonton, Alberta, T6G 2P5 (Canada)

ANDRÉ P. VENOT, R. MURRAY RATCLIFFE,

Chembiomed Ltd., Edmonton Research and Development Park, P.O. Box 8050, Edmonton, Alberta, T6H 4N9 (Canada)

AND OLE HINDSGAUL

Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 (Canada) (Received October 4th, 1988; accepted for publication, December 13th, 1988)

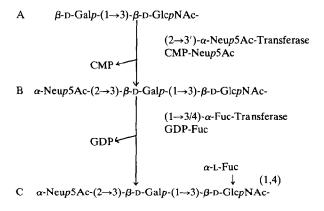
ABSTRACT

The isomeric sialyl-Le^a-terminating pentasaccharide derivatives, α -Neup5Ac-(2 \rightarrow 3)- β -D-Galp-(1 \rightarrow 3)-[α -L-Fucp-(1 \rightarrow 4)]- β -D-GlcpNAc-(1 \rightarrow 3)- β -D-Galp-O(CH₂)₈COOMe (1) and α -Neup5Ac-(2 \rightarrow 3)- β -D-Galp-(1 \rightarrow 3)-[α -L-Fucp-(1 \rightarrow 4)]- β -D-GlcpNAc-(1 \rightarrow 6)- β -D-Galp-O(CH₂)₈COOMe (2), have been prepared by the action in sequence of a porcine submaxillary (2 \rightarrow 3)- α -sialyltransferase and a human-milk (1 \rightarrow 3/4)- α -fucosyltransferase on the chemically synthesized trisaccharides β -D-Galp-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow 3)- (4) and -(1 \rightarrow 6)- β -D-Galp-O(CH₂)₈COOMe (5), respectively.

INTRODUCTION

The sialyl-Le^a antigen, α -Neup5Ac-(2 \rightarrow 3)- β -D-Galp-(1 \rightarrow 3)-[α -L-Fucp-(1 \rightarrow 4)]- β -D-GlcpNAc (C), is widely regarded as a tumor-associated antigen, and monoclonal antibodies, especially 1116NS 19-9, which detect this structure are important in the diagnosis of human gastrointestinal cancers¹⁻³. The sialyl-Le^a tetrasaccharide terminus was demonstrated originally on the sialylated lacto-N-fucopentaose II glycolipid^{4,5} and later in oligosaccharides from human milk^{6,7}, where it is attached to the 3-position of a β -D-Galp residue. The antigen has been detected also on scrum mucins of cancer patients⁸ and in mucin-like glycoproteins in human seminal plasma and milk^{9,10}. The detailed structural work on these latter oligosaccharides is in progress¹¹. The antigen has also recently been detected in asparagine-linked oligosaccharides¹².

Since the sialyl-Le^a structure is a sialylated and fucosylated Type 1 [β -D-Galp-


^{*}Author for correspondence.

(1→3)-β-D-GlcpNAc] chain, the possibility for the expression of this antigen exists wherever Type 1 chains occur and, in fact, wherever β-D-GlcpNAc residues occur. We are involved in producing and better characterising the specificity of monoclonal antibodies against sialyl-Le^a-containing structures, using synthetic carbohydrate antigens in immunization and in screening ^{13,14}, and we now report the preparation of α-Neup5Ac-(2→3)-β-D-Galp-(1→3)-[α-L-Fucp-(1→4)]-β-D-GlcpNAc-(1→3)-β-D-Galp-OR (1) and α-Neup5Ac-(2→3)-β-D-Galp-(1→3)-[α-L-Fucp-(1→4)]-β-D-GlcpNAc-(1→6)-β-D-Galp-OR (2), where $R = (CH_2)_8COOMe$. Total chemical syntheses of 1 and 2 were possible, but a combined chemical/enzymic approach was explored which would be applicable to other, more complex, sialyl-Le^a-containing structures. The use of glycosyltransferases in the synthesis of oligosaccharides now has sufficient precedent ¹⁵⁻²¹ to render this approach frequently the method of choice for the rapid production of such molecules in quantities sufficient for biological assays.

The pathway of biosynthesis for the production of the sialyl-Le^a determinant has been proposed²² to involve sialylation of Type 1 structures (A) followed by fucosylation as summarized in Scheme 1. The biosynthetic sialylation is catalyzed by a β -D-Galp-(1 \rightarrow 3/4)- β -D-GlcpNAc:CMP-Neup5Ac (2 \rightarrow 3')- α -sialyltransferase (EC 2.4.99.5), an enzyme which has been purified to homogeneity from rat liver²³. The utility in synthesis of this enzyme has been demonstrated¹⁹, but it is tedious to purify and is not yet available commercially. However, a β -D-Galp-(1 \rightarrow 3)- α -D-GalpNAc:CMP-Neu5Ac $(2\rightarrow 3')$ - α -sialyltransferase (EC 2.4.99.4) from porcine submaxillary glands²⁴ is available commercially and cross-reacts^{25,26}, albeit poorly, with structures terminating in the Type 1 sequence A. The latter sialyltransferase has been used because of its availability. A fucosyltransferase activity which converts B into C (Scheme 1) has been detected in colonic tumor-cell extracts²² and, presumably, is the Lewis (or 3/4)- α -fucosyltransferase. However, the Lewis fucosyltransferase from human milk was reported^{22,27} not to fucosylate a milk oligosaccharide terminating in the structure B. These results contrast with the report²⁸ that a sialylated-Type 1-terminating milk oligosaccharide is a substrate for a highly purified human milk $3/4-\alpha$ -fucosyltransferase. A major concern, therefore, was whether a readily accessible fucosyltransferase activity could be found that would convert B into C with our synthetic structures. We now report that a readily accessible, partially purified fucosyltransferase activity from the milk of a human Lea+b- donor efficiently catalyzes this conversion. This same activity was also found, as observed by others²⁹, to fucosylate Type 2 structures terminating in α -Neup5Ac- $(2\rightarrow 3)$ - β -D-Galp- $(1\rightarrow 4)$ - β -D-GlcpNAc, thereby producing the so-called sialyl-Lex determinant, also found on tumor-associated carbohydrates^{30,31}.

RESULTS AND DISCUSSION

The objective of this study was to evaluate the potential of the commercially available porcine $(2\rightarrow 3)-\alpha$ -sialyltransferase and the human milk $(1\rightarrow 3/4)-\alpha$ -fucosyl-

Scheme 1. Biosynthetic pathway for the sialyl-Lea determinant.

transferase preparation as tandem enzymes in the preparative syntheses of sialyl-Le^a-terminating oligosaccharides. The reactions were performed only on a mg scale, although the syntheses can be scaled-up if required. The syntheses reported yielded material sufficient for characterization by ¹H-n.m.r. spectroscopy and for probes for studying antibody/antigen reactions.

The oligosaccharides used in this study (Table I) were prepared as 8-methoxy-carbonyloctyl glycosides in order to allow their conversion into artificial antigens^{13,14,32} and affinity matrices³³. The presence of this hydrophobic spacer arm allows the rapid isolation of oligosaccharides on C₁₈ reverse-phase chromatographic supports, and thereby provides a simple method for the assay of glycosyltransferase activity³⁴. The kinetic characteristics for many of the enzymic reactions are included in Table I. Compounds 3–6 and 9–15 (Table I) had been prepared by total chemical synthesis and were available as structurally characterized enzyme substrates and products.

Sialyltransferase reactions. — The porcine submaxillary $(2\rightarrow 3)$ - α -sialyltransferase catalyzes the transfer of sialic acid from CMP-Neup5Ac to HO-3' of β -D-Galp- $(1\rightarrow 3)$ - α -D-GalpNAc- $(1\rightarrow O)$ -Ser/Thr^{24,25}. The synthetic "T" disaccharide (15) was an excellent substrate for this enzyme ($K_{\rm m}$ 44 μ m; Table I). The $K_{\rm m}$ of this enzyme for the Type 1 structure 3 was 100-fold higher, but, as reported²⁶, extended reaction resulted in the formation of sialylated product. Reactions of 4 and 5 with the enzyme and CMP-Neup5Ac for 5 days at 37° produced the sialylated tetrasaccharides 7 (30%) and 8 (45%), respectively, which were isolated readily on a mg scale. The superior yield of 8 is reflected in the relative rates of sialylation of 4 and 5, which are presented in Table I. However, each compound was a poor substrate. Nevertheless, the sialylation can be viewed as a reasonable synthesis step, since unreacted 4 and 5 are neutral compounds that can be recovered afterion-exchange chromatography and recycled. As noted²⁵, Type 2 structures are poor acceptors for this glycosyltransferase and 11 showed very low activity under the

TABLEI

STRUCTURE AND ACCEPTOR PROPERTIES OF THE OLIGOSACCHARIDES 1-15

Com-	Designation ^a	Structure	Sialyltransferase	ferase	Fucosyltransferase	ısferase
pounu			Relative rate (%) ^b	$K_m(\mu M)$	$K_m(\mu M)$	Relative V _{max} (%) ^c
Type I Structures	uctures			THE STATE OF THE S	AND AND ALCOHOLOGY OF THE PROPERTY OF THE PROP	A
· es	Type 1	β -D-Galp- $(1\rightarrow 3)$ - β -D-GlcpNAc-OR ^d	15	4100 ± 480	68 ±3	96
4			4		151 ±40	17
ın			7		326 ±64	9/
9					116 ± 25	100
7	SA→Type I→3-Gal				145 ±22	18
œ.		α -Neup5Ac-(2 \rightarrow 3)- β -D-Galp-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow 6)- β -D-Galp-OR			176 ±16	65
6		α -L-Fucp- $(1\rightarrow 4)$				
10	SA +Lea	β-D-Calp-(1→3)-β-D-GkpNAc-OR α-t-Fucp-(1→4)				
		α -Neup5Ac- $(2\rightarrow 3)$ - β -D-Galp- $(1\rightarrow 3)$ - β -D-GlcpNAc-OR				
₩		α -L-Fucp-(1 \rightarrow 4)				
,		α -Neup5Ac-(2 \rightarrow 3)- β -D-Galp-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow 3)- β -D-Galp-OR				
4	→6-Gal	α-r-rup'(1→4) α-Neup5Ac-(2→3)-β-D-Galp-(1→3)-β-D-GlcpNAc-(1→6)-β-D-Galp-OR				
Type 2 Structures	ıctures					
=======================================	2	β-D-Galp-(1→4)-β-D-GlcpNAc-OR	0.3	2600 ±500 45 ±7	45 ±7	100
2 ;	SA→Type 2	α-Neup5Ac-(2→3)-β-D-Galp-(1→4)-β-D-GlcpNAc-OR			13 ± 4	95
3		α-L-rucp-(1→3) β-n-Gain-(1→4)-β-n-GicnNΔc-OR				
4	SA-Lex	a-L-Fucp-(1->3)				
15	H	α-Neup5Ac-(2→3)-β-D-Galp-(1→4)-β-D-GlcpNAc-OR β-D-Galp-(1→3)-α-D-GalpNAc-OR	100	44 ±4		
CONTRACTOR AS AS ASSESSMENT OF THE PROPERTY.	AND AND THE PROPERTY OF THE PR	The first contract of the cont	A A CALL CO. THE COMMENTAL PROPERTY OF THE CALL CO.	Administration of a special party of the control of	And the second s	

"SA refers to α-Neup5Ac-(2→3). ^bDetermined at mm acceptor concentration and 200μm CMP-Neup5Ac. '100% V_{max} was 14.3 pmol/min fucose transferred; other conditions are given in the Experimental. ${}^{d}R = (CH_2)_8COOMe$.

assay conditions. Neither the Le^a nor Le^x trisaccharides (9 and 13, respectively) were acceptors for the enzyme.

Fucosyltransferase reactions. — A fucosyltransferase activity, in human milk, capable of fucosylating both Type 1 and 2 structures has long been known^{27,35,36}. This enzyme has been recognized more recently as the Lewis-fucosyltransferase, which is a 3/4- α -fucosyltransferase³⁷. This activity was isolated readily by passage of an ammonium sulfate precipitate of defatted milk from a human Le^{a+b-} donor onto CM-Sephadex and elution of the retained protein, using stepwise increments of salt concentration. This simple procedure resulted in a 175-fold purification of the fucosyltransferase. The preparation was free of $(1\rightarrow 2)$ - α -fucosyltransferase activity, when assayed using phenyl β -D-galactopyranoside as an acceptor³⁴, was stable for at least four months at 4°, and could be used directly for the fucosylation of oligosaccharides.

As seen from the kinetic data in Table I, the fucosyltransferase was active against both Type 1 and 2 substrates, non-substituted as well as sialylated. The Type 1 disaccharide 3 has a K_m of $68\mu M$, which is similar to that of the Type 2 disaccharide 11 ($K_{\rm m}$ 45 μ M), and the values of $V_{\rm max}$ are comparable, in agreement with the results^{27,29} obtained with the corresponding reducing disaccharides as acceptors. The synthetic sialylated Type 2 structure 12 was the best acceptor for the fucosyltransferase, with a $K_{\rm M}$ of 13 μ M, the decreased $K_{\rm m}$ being in line with results obtained with reducing oligosaccharides²⁹. The sialylated Type 1 sequence 6 was also an excellent acceptor for the fucosyltransferase. The products of the incubation of 6 and 12 with the enzyme preparation and unlabelled GDP-fucose were isolated and shown by ¹H-n.m.r. spectroscopy to be identical to the chemically synthesized sialyl-Le^a (10) and sialyl-Le^x (14) tetrasaccharides, respectively, thereby confirming the specificity of these reactions. The ¹H-n.m.r. spectra of 10 and 14, as well as those of all structures containing the Lea or Lex trisaccharides, are characterized by the uniquely deshielded^{13,38} signal for H-5 (dq) of the fucose residue which resonates near 4.8 p.p.m. (see Table II). The enzyme was also active against both the Type 1-terminating trisaccharides 4 and 5, although these were clearly distinguished kinetically.

Fucosylation of the sialylated Type 1 tetrasaccharides 7 and 8 proceeded to completion (>95%), within 72 h at 37°, as verified by the $^1\text{H-n.m.r.}$ spectra of the isolated products. The pure pentasaccharides 1 and 2 were obtained by isolation on C_{18} reverse-phase cartridges, followed by ion-exchange chromatography and desalting. The position of fucosylation was again evident from the chemical shift of the resonance of H-5 of the new fucosyl residue, as described above.

The key ¹H-n.m.r. spectral parameters for the compounds used in this study are presented in Table II. The spectra of several of these compounds have been reported previously, but they are given in Table II with the same concentration, temperature, field, and internal standard, in order to permit direct comparison. The most striking feature of the data in Table II is the invariance of the chemical shifts of the signals of the reporter-group protons of both the fucosyl and sialyl

TABLE II

SELECTED ¹H-N.M.R. DATA FOR **1-14**^{a,b}

		α-Fuc-(1							4 -	6)-β-Gal-(1·	1-(1		 →O(CH ₂)	О(СН ₂),СООМе
	2			α-SA-(2→3)-	23)		/ →β-Gal-(1→3)-β-GlcNAc-(1<	1→3)-β-G	 cNAc-(1;		→3)-β-Gal-(1—	1-(1	→0(CH ₂) →0(CH ₂)	→O(CH ₂) ₈ COOMe →O(CH ₂) ₈ COOMe
Compound	I-H	Н-5	9-II	H-3e	H- $3a$	NAc	I-H	H-I	NAc	H-1	I-H	H-4	ОМе	СН2СО
Type I Structures	es												THE RESIDENCE OF THE PARTY OF T	
છ							4.545	4.269	2.023				3.687	2.388
4							4.439	4.746	2.026		4.373	4.140	3.687	2.387
22							4.435	4.587	2.022	4.366			3.689	2.391
. 9				2.756	1.784	2.028	4.549	4.993	2.022				3.688	2.390
7				2.758	1.786	2.027	4.507	4.750	2.027		4.374	4.137	3.687	2.388
20				2.760	1.782	2.028	4.502	4.586	2.029	4.367			3.687	2.392
6	5.021	4.874	1.178				4.514	4.485	2.030				3.687	2.388
10	5.005	4.873	1.171	2.768	1.767	2.028	4.526	4.526	2.034				3.689	2.392
1	5.013	4.874	1.174	2.769	1.770	2.028	4.547	4.701	2.037		4.368	4.139	3.688	2.388
7	5.004	4.871	1.170	2.770	1.763	2.028	4.538	4.555	2.033	4.364			3.689	2.393
Type 2 Structures	sə.													
11							4.472	4.521	2.030				3.686	2.388
12				2.757	1.800	2.030	4.513	4.552	2.026				3.685	2.388
13	5.108	4.845	1.174				4.453	4.552	2.026				3.685	2.388
14	5.101	4.826	1.168	2.764	1.794	2.031	4.520	4.520	2.019				3.685	2.387
											THE PARTY NAMED IN COLUMN TWO IS NOT THE OWNER, THE PARTY NAMED IN COLUMN TWO IS NOT THE OWNER, THE PARTY NAMED IN COLUMN TWO IS NOT THE OWNER, THE PARTY NAMED IN COLUMN TWO IS NOT THE OWNER, THE PARTY NAMED IN COLUMN TWO IS NOT THE OWNER, THE PARTY NAMED IN COLUMN TWO IS NOT THE OWNER, THE PARTY NAMED IN COLUMN TWO IS NOT THE OWNER, THE PARTY NAMED IN COLUMN TWO IS NOT THE OWNER, THE PARTY NAMED IN COLUMN TWO IS NOT THE OWNER, THE PARTY NAMED IN COLUMN TWO IS NOT THE OWNER, THE PARTY NAMED IN COLUMN TWO IS NOT THE OWNER, THE PARTY NAMED IN COLUMN TWO IS NOT THE OWNER, THE PARTY NAMED IN COLUMN TWO IS NOT THE OWNER, THE			

^a360 MHz, D₂O, ~22°, internal 0.01% acctone (δ 2.225). ^bCoupling constants: H-1 (α-Fuc), $J_{1,2}$ 4 Hz; H-5 (α-Fuc), $J_{4,5}$ 1, $J_{5,6}$ 6.5 Hz; H-1 (β-Gal, β-GlcNAc), $J_{1,2}$ 8 Hz; α-SA (H-3a), $J_{3a,3e}$ −12, $J_{3a,4}$ 11 Hz; α-SA (H-3e), $J_{3e,4}$ 4.5 Hz; H-4 (β-Gal), $J_{3,4}$ 4 Hz; CH₂CO (t), $J_{7.5}$ Hz. The variation in these coupling constants was $<\pm 0.3$ Hz.

residues within the same series, *i.e.*, Type 1 or 2. The signals for H-1,5,6 of the fucosyl residue and H-3a,3e of the sialic acid units are expected³⁹ to be sensitive to changes in the three-dimensional structures of these determinants. The differences in the chemical shift data between these structures are <0.03 p.p.m. and therefore negligible³⁹. The tentative conclusion is that neither sialylation of the fucosylated structures nor fucosylation of the sialylated structures causes appreciable change in the conformation of these Type 1 and 2 antigens. Any changes observed in the antibody-reactivity of the new pentasaccharide structures 1 and 2, relative to that of the sialyl-Le^a tetrasaccharide 10, will probably reflect the recognition of the reducing-end galactose residues by the antibody-combining sites. Evaluation of the antibody-binding properties of these structures, as well as the enzymic preparation of additional sialyl-Le^a and sialyl-Le^x analogs, is in progress.

EXPERIMENTAL

General. — ¹H-N.m.r. spectra (0.01% internal acetone; δ 2.225) were recorded with a Bruker WM-360 instrument for mM solutions in D₂O at ~22°. Phenol–sulfuric acid assays were conducted according to Dubois *et al.*⁴⁰. Glycosyltransferase assays were performed using a modification of the method described by Palcic *et al.*³⁴.

Sep-Pak C_{18} cartridges were obtained from Waters Associates, DEAE-Sephadex A25, CM-Sephadex C50, Sepharose 4B, and PD-10 columns from Pharmacia, guanosine diphospho-L-[U-\frac{14}{C}]fucose (248 mCi/mmol) and cytidine 5'-monophosphate-[9-\frac{3}{H}]Neup5Ac (11.5 Ci/mmol) from New England Nuclear, CMP-Neup5Ac from Sigma, and ACS liquid scintillation cocktail from Amersham International. GDP-fucose was synthesized as described\frac{41}{1}. (2\rightarrow 3)-\alpha-Sialyl-transferase from porcine submaxillary glands (EC 2.4.99.4) 120 munit/mL was purchased from Genzyme Corporation. Compounds 3 and 9\frac{13}{2}, 4 and 5\frac{42}{2}, 6, 10, 12, and 14\frac{43}{3}, 11\frac{144}{4}, 13\frac{38}{4}, and 15\frac{45}{5} were available from previous work. A protein assay kit, based on the method described by Bradford\frac{46}{6}, was obtained from Bio-Rad Laboratories.

Preparative sialylation. — Acceptor 4 or 5 (1–2.5 mg), CMP-Neup5Ac (0.7 equiv.), 6–7 munit (50–60 μ L) of sialyltransferase, and 25–40 μ L of 25mM sodium cacodylate buffer (pH 6.5) containing 0.5% of Triton X-100 and 1 mg/mL of bovine serum albumin (BSA) were incubated at 37° for 2 days. More CMP-sialic acid (0.7 equiv.) was then added. After 3 days, the mixture was diluted to 5 mL with H₂O and passed onto a C₁₈ cartridge, conditioned as suggested by the manufacturer. The cartridge was washed with H₂O (3 × 5 mL) then with MeOH (3 × 5 mL). The MeOH eluate was concentrated to dryness and a solution of the residue in H₂O (2.0 mL) was passed on to a 1.0-mL column of DEAE-Sephadex A25 (Cl⁻ form). The column was washed with H₂O (5 × 2 mL). Phenol–sulfuric acid-positive material (3 or 4) was eluted only in the first 3 fractions. The sialylated products were eluted with M NaCl (3 × 2 mL) and desalted by adsorption onto a C₁₈ cartridge

which was washed with H_2O (15 mL). Elution with MeOH (15 mL) followed by concentration and lyophilization from H_2O provided **7** or **8** as white powders. The yields were determined using the phenol–sulfuric acid assay with galactose as the reference, and by integration of relevant signals vs internal acetone in the fully relaxed ¹H-n.m.r. spectra. The yields determined by these two methods agreed within 10%. Compounds **7** and **8** were obtained reproducibly in yields of 30% and 45%, respectively.

Sialyltransferase kinetics. — Reported methodologies³⁴ were adapted for assaying sialyltransferase activity. For studies of the relative rates, incubation mixtures contained, in a total volume of 64 µL, 200µM CMP-Neup5Ac, 0.1 µCi of CMP-3H-Neup5Ac, mm acceptor saccharide, and enzyme (76 µunit for 15, and 240 μ unit for 3–5 and 11) in 25mM sodium cacodylate buffer (pH 6.5) containing 0.5% of Triton X-100 and 1 mg/mL of BSA. After reaction at 37° for 1-3 h, the mixture was diluted with H₂O and applied to a Sep-Pak cartridge. Unreacted CMP-Neup5Ac was eluted with 25 mL of H₂O, or until background counts were reached. Radiolabelled reaction products were eluted with MeOH (2 × 5 mL), and quantitated as d.p.m. in 10 mL of ACS liquid scintillation cocktail with a Beckman LS1801 scintillation counter. Kinetic studies were carried out in an analogous manner, but with various concentrations of acceptor, 8.3-100 µm for 15, or 0.4-4.0mm for Types 1 or 2 acceptors. Reaction was such that no greater than 10% turnover occurred to ensure initial rate conditions. The kinetic parameters V_{max} and $K_{\rm m}$ were determined using a computer program based on the method described by Wilkinson⁴⁷.

Preparative fucosylation. — The purification of human milk fucosyltransferase was carried out at 4° and was a modification of reported^{27,48} procedures. Thawed milk (300 mL) from a Lea+b- donor was defatted by centrifugation, and protein that precipitated at 65% (NH₄)₂SO₄ saturation was dialyzed against 25mm sodium cacodylate buffer (pH 6.5) (3 \times 4 L) containing 5mm MnCl₂ (buffer A). After dialysis, any precipitated protein was removed by centrifugation and the supernatant solution was loaded onto a column (2.5 × 35 cm) of CM-Sephadex C50 equilibrated with buffer A. The column was washed with this same buffer until no further protein was eluted, then was developed stepwise with buffer A containing 0.1, 0.2, and 0.3M NaCl. Fractions containing fucosyltransferase activity, which were eluted generally with the 0.2M NaCl-containing buffer, were combined, and concentrated by ultrafiltration to 3 mL. The preparation thus obtained was purified 175-fold, and contained 34 munit of enzyme activity (80% yield), assayed as described below, with a protein content of 20 mg as determined by the Bradford assay⁴⁶ using BSA as a standard. This material was used without further purification.

Incubation mixtures contained, in 1.2 mL, acceptors **6**, **7**, **8**, or **12** (0.5–1.0 mg), GDP-fucose (1.7 equiv.), fucosyltransferase (1.6 munit), 8mM MnCl₂, 1.6mM ATP, 1.6mM ATP, 1.6mM NaN₃, and 25mM sodium cacodylate buffer (pH 6.5). After 24 h at 37°, 1.7 equiv. of GDP-fucose and 0.6 munit of fucosyltransferase

were added to the mixtures, which were kept at 37° for an additional 48 h. The products were isolated as described above for the sialylation reactions, except that elution from the column of DEAE was performed using 6 mL of 0.2m NaCl. Recoveries of the lyophilized powders varied in the range 50–75% and were not optimized. No unfucosylated starting materials could be detected by ¹H-n.m.r. spectroscopy, demonstrating that quantitative (>95%) fucosylation had occurred. No impurities were indicated by the ¹H-n.m.r. spectra.

For kinetic studies, the enzyme was purified further by affinity chromatography on a 2-mL GDP-hexanolamine Sepharose column⁴⁹ (4 μ mol of ligand/mL of gel), equilibrated with 50mM sodium cacodylate buffer (pH 7.2) containing 25% of glycerol and 0.05% of NaN₃ (buffer B). The column was washed with this buffer, then buffer B containing 0.1M NaCl. Enzyme was cluted in 22 mL of buffer B containing 0.8M NaCl and 5mM GMP. This eluent (24 munit, 57% yield, 225 μ g of protein) was brought to 0.14 mg/mL BSA to stabilize the fucosyltransferase, and immediately desalted on columns of PD-10 equilibrated with buffer A. Desalted samples were dialyzed against buffer A containing 50% of glycerol and concentrated to 3 mL by ultrafiltration. This preparation was stable for at least four months at 4°.

Fucosyltransferase kinetics. — Incubation mixtures contained in 50 μL, 48 μM GDP-fucose, 25,000 d.p.m. GDP- 14 C-fucose, 25–500μM acceptor saccharide, fucosyltransferase (10 μunit), and 8mM MnCl₂, in 25mM sodium cacodylate buffer (pH 6.5). After reaction at 37° for 1 h, radiolabelled products were separated on Sep-Pak cartridges and counted in 10 mL of ACS cocktail as described above for sialyltransferase assays; less than 20% of the label was transferred to products. In order to conserve GDP-fucose, routine assays throughout the enzyme isolation were conducted with 3μM GDP-fucose, 500μM 3 or 11, 8mM MnCl₂, 1.6mM NaN₃, 1.6mM ATP, and enzyme in 100 μL of 25mM sodium cacodylate (pH 6.5) for 1 h at 37°. In order to determine the yields at each step of the isolation, 48μM GDP-fucose and 500μM 3 were used with the remaining conditions being identical to those for routine assays. A unit is defined as the amount of enzyme transferring 1 μmol of fucose/min.

ACKNOWLEDGMENTS

This work was supported by operating grants (to MMP and OH) from the Natural Sciences and Engineering Research Council of Canada. We thank the Alberta Heritage Foundation for Medical Research for ongoing generous support, and Mr. G. Alton for the GDP-hexanolamine Sepharose support.

REFERENCES

- 1 M. HERLYN, H. F. SEARS, Z. STEPLEWSKI, AND H. KOPROWSKI, J. Clin. Immunol., 2 (1982) 135-140.
- 2 H. F. Sears, M. Herlyn, B. Del Villano, Z. Steplewski, and H. Koprowski, J. Clin. Immunol., 2 (1982) 141–149.
- 3 H. TAKASAKI, E. UCHIDA, M. A. TEMPERO, D. A. BURNETT, R. S. METZGAR, AND P. P. POUR, Cancer Res., 48 (1988) 1435–1438.

- 4 J. L. MAGNANI, B. NILSSON, M. BOCKHAUS, D. ZOPF, Z. STEPLEWSKI, H. KOPROWSKI, AND V. GINSBURG, J. Biol. Chem., 257 (1982) 14365–14369.
- 5 K.-E. FALK, K.-A. KARLSSON, G. LARSON, J. THURIN, M. BLASZCZYK, Z. STEPLEWSKI, AND H. KOPROWSKI, *Biochem. Biophys. Res. Commun.*, 110 (1983) 383–391.
- 6 J.-M. WIERUSZESKI, A. CHEKKOR, S. BOUQUELET, J. MONTREUIL, G. STRECKER, J. PETER-KATALINIC, AND H. EGGE, *Carbohydr. Res.*, 137 (1985) 127–138.
- 7 K. L. LAW AND D. F. SMITH, Arch. Biochem. Biophys., 258 (1987) 315-323.
- 8 J. L. MAGNANI, Z. STEPLEWSKI, H. KOPROWSKI, AND V. GINSBURG, Cancer Res., 43 (1983) 5489-5492.
- 9 F. G. HANISCH, G. UHLENBRUCK, AND C. DIENST, Eur. J. Biochem., 144 (1984) 467-473.
- 10 F. G. HANISCH, G. UHLENBRUCK, C. DIENST, M. STOTTROP, AND E. HIPPAUF, Eur. J. Biochem., 149 (1985) 323–330.
- 11 F. G. HANISCH, G. UHLENBRUCK, J. PETER-KATALINIC, AND H. EGGE, Carbohydr. Res., 178 (1988) 29–47.
- 12 T. L. KLUG, N. C. LEDONNE, T. F. GREBER, AND V. R. ZURAWSKI, JR., Cancer Res., 48 (1988) 1505–1511.
- 13 R. U. LEMIEUX, D. R. BUNDLE, AND D. A. BAKER, J. Am. Chem. Soc., 97 (1975) 4076-4083.
- 14 D. R. BUNDLE, M. A. J. GIDNEY, N. KASSAM, AND A. F. R. RAHMAN, J. Immunol., 129 (1982) 678–682.
- 15 P. R. ROSEVEAR, H. A. NUNEZ, AND R. BARKER, Biochemistry, 21 (1982) 1421-1431.
- 16 C.-H. WONG, S. L. HAYNIE, AND G. M. WHITESIDES, J. Org. Chem., 47 (1982) 5416-5418.
- 17 C. Auge, S. David, C. Mathieu, and C. Gautheron, Tetrahedron Lett., 25 (1984) 1467–1470.
- 18 J. THIEM AND W. TREDER, Angew. Chem. Int. Ed. Engl., 25 (1986) 1096-1097.
- 19 S. SABESAN AND J. C. PAULSON, J. Am. Chem. Soc., 108 (1986) 2068-2080.
- 20 M. M. PALCIC, O. P. SRIVASTAVA, AND O. HINDSGAUL, Carbohydr. Res., 159 (1987) 315-324.
- 21 H. J. DE HEIJ, M. KLOOSTERMAN, P. L. KOPPEN, J. H. VAN BOOM, AND D. H. VAN DEN EIJNDEN, J. Carbohydr. Chem., 7 (1988) 209–222.
- 22 G. C. HANSSON AND D. ZOPF, J. Biol. Chem., 260 (1985) 9388-9392.
- 23 J. WEINSTEIN, U. DE SOUZA-E-SILVA, AND J. C. PAULSON, J. Biol. Chem., 257 (1982) 13835-13844.
- 24 J. E. SADLER, J. I. REARICK, J. C. PAULSON, AND R. L. HILL, J. Biol. Chem., 254 (1979) 4434-4443.
- 25 J. I. REARICK, J. E. SADLER, J. C. PAULSON, AND R. L. HILL, J. Biol. Chem., 254 (1979) 4444-4451.
- 26 K. G. I. NILSSON, Proc. Japanese-German Symp. Sialic Acids, Berlin, F.R.G., May 18-21, 1988, pp. 28-29.
- 27 J. P. PRIEELS, D. MONNOM, M. DOLMANS, T. A. BEYER, AND R. L. HILL, J. Biol. Chem., 256 (1981) 10456–10463.
- 28 P. H. JOHNSON, W. M. WATKINS, AND A. S. R. DONALD, Proc. Int. Symp. Glycoconjugates, 1Xth, Lille, France, July 6-11, 1987, Abstr. E107.
- 29 P. H. JOHNSON AND W. M. WATKINS, Biochem. Soc. Trans., 13 (1985) 1119-1120.
- 30 K. Fukushima, M. Hirota, P. I. Terasaki, A. Wakisaka, H. Togashi, D. Chia, N. Suyama, Y. Fukushi, E. Nudelman, and S. Hakomori, *Cancer Res.*, 44 (1984) 5279–5285.
- 31 E. H. HOLMES, G. K. OSTRANDER, AND S. HAKOMORI, J. Biol. Chem., 261 (1986) 3737-3743.
- 32 R. U. LEMIEUX, D. A. BAKER, AND D. R. BUNDLE, Can. J. Biochem., 55 (1977) 507-512.
- 33 R. U. LEMIEUX, D. A. BAKER, W. M. WEINSTEIN, AND C. M. SWITZER, *Biochemistry*, 20 (1981) 199–205.
- 34 M. M. PALCIC, L. D. HEERZE, M. PIERCE, AND O. HINDSGAUL, Glycoconjugate J., 5 (1988) 49-63.
- 35 E. F. GROLLMAN, A. KOBATA, AND V. GINSBURG, J. Clin. Invest., 48 (1969) 1489-1494.
- 36 Z. JARKOVSKY, D. M. MARCUS, AND A. P. GROLLMAN, Biochemistry, 9 (1970) 1123-1128.
- 37 R. ORIOL, J. LEPENDU, AND R. MOLLICONE, Vox Sang., 51 (1986) 161-171.
- 38 O. HINDSGAUL, T. NORBERG, J. LEPENDU, AND R. U. LEMIEUX, Carbohydr. Res., 109 (1982) 109–142.
- 39 R. U. LEMIEUX AND K. BOCK, Arch. Biochem. Biophys., 221 (1983) 125–134.
- 40 M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, *Anal. Chem.*, 28 (1956) 350–356.
- 41 H. A. NUNEZ, J. V. O'CONNOR, P. R. ROSEVEAR, AND R. BARKER, Can. J. Chem., 59 (1981) 2086–2095.
- 42 R. U. LEMIEUX, S. Z. ABBAS, AND B. Y. CHUNG, Can. J. Chem., 60 (1982) 68-75.

- 43 A. VENOT AND R. M. RATCLIFFE, Proc. Japanese-German Symp. Sialic Acids, Berlin, F.R.G., May 18-21, 1988, pp. 54-55.
- 44 D. P. KHARE, O. HINDSGAUL, AND R. U. LEMIEUX, Carbohydr. Res., 136 (1985) 285-308.
- 45 R. M. RATCLIFFE, D. A. BAKER, AND R. U. LEMIEUX, Carbohydr. Res., 93 (1981) 35-41.
- 46 M. BRADFORD, Anal. Biochem., 72 (1976) 248-254.
- 47 G. N. WILKINSON, Biochem. J., 80 (1961) 324-332.
- 48 P. H. JOHNSON AND W. M. WATKINS, Biochem. Soc. Trans., 10 (1982) 445-446.
- 49 T. A. BEYER, J. E. SADLER, AND R. L. HILL, J. Biol. Chem., 255 (1980) 5364-5372.